外における方向性は「現地に根 きており、そこは難関工事への %(4駅、高架橋11・6*)以、トン 除によるところが大きい。シン んでいこう」といったものだ。 左してやっていこう」とともに、 カポール進出当初から当社の海 **稣道)工事を受注以来、継続し 業を開始し、現在53年目となる。** 続されており、これまで携わっ 難しい工事にも果敢に取り組 KMRT工事は同国全体の約8 燃続的挑戦による長年の信頼関 鉄道インフラ工事を受注して 986年にMRT (都市高速 当社の方向性は50年に渡り継 佐藤工業がシンガポールで事

ン線ベン ン駅建設工事

佐藤 事のベンクーレン駅建設工事 MRTダウンタウン線第3期 フォートカニングボルダー

難関工事であった。地下鉄新規 開発事業では一つの駅やトンネ 貫くシンガポール最大深度(地 ベッドと呼ばれる巨石転石層を 特に

> ルの遅れが全体の遅れへとつな がるため、実際のプロジェクト ことが一つの課題だった。 マネジメントにおいて、日々迫

挑戦した実績を買われての受注 拡張工事も、前述の難関工事に

であると言える。

難関工事で手戻りゼロを実現

注者とともに工期短縮策を模索

したが、着目したのは地下鉄駅

た。 それは、 過去に 当社が施工 上事の手戻り工事の多さであっ

)たMRT環状線ロロンチュア 、駅建設工事での逆巻き工法に

いた。プロジェクトチームは発

るためのキーワードとして「チ クトチームはその課題を克服す 駅構築のスピードを最大化する る工期達成に対するプレッシャ 当時の発注者と当社プロジェ の中、逆巻き工法による地下 ムワーク」を共通認識として

電車)センカンプンゴルLRT

海外建設協会

ロジェクト便り

▼シンガポール

区およびLRT(次世代型路面 Aアイランド線タビストックエ 不ル12・3 告ば)に及んでいる。

現在進行中のMRT工事クロ

ダウ

地下6階構造のベン

多岐にわたる設計意図の統合

計の早期確定が必要であり、

的な建築構造物としての機能設

よび設備・建築仕上げなど総合

逆巻き工法で掘削中に出現した 巨大転石

のVE提案の承認を取り付け ンクーレン駅建設工事では複数 変重要となった。 を取りまとめる筆者の役割は大 た。また、早期に本設構造・仮 立性を達成するため、 設時構造・建築の収まりとの両 筆者が統括した当該プロジェク 「設計調整チームには最大で7 事に適用されることが多く の設備設計調整者を配置し

口を達成し、工期内完工を達成 った設計の確実な統合が、コン クリート打設後の手戻り工事ゼ 排気・防火・上下水・軌道とい まらず、鉄道設備、すなわち給 させるに至った。 結果として、土木工事にとど

> 成功要因の一つであろう。 ーク」を組成することは重要な

業所副所長・和田良太)

(シンガポール支店8100

導いた鍵であり、「チームワ 一の理解がプロジェクトを成功 設計の統合には、

市街地の狭い空間での作業状況

よる駅構築でも同様だった。

逆巻き工法の施工の速さに 本設RC構造床の補強、

の設計の統合は、「和をもって うことが成功の糸口である。 し」とする精神をもつ日本人 来このような多種多様な立場 責任感をもって取り組んでも および当社ローカル担当職員 設計コンサ

No. 02

嘁員は得意とする。 工事そのも

も写真にある通り一般的な状

ではないが、鉄道工事の特殊

日刊建設工業新聞 2024年12月18日 0 1 2 面 0 1版